Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Lab Anim ; : 236772231209790, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460550

RESUMEN

Staphylococcus aureus nasal carriage is considered a risk factor for infections, and the development of nasal decolonization strategies is highly relevant. Despite they are not naturally colonized by Staphylococcus, mice are a good model for S. aureus nasal colonization. Murine models are easy to manipulate, and inter-laboratory reproducibility makes them suitable for nasal colonization studies. Strategies using bioluminescent bacteria allow for the monitoring of infection over time without the need to sacrifice animals for bacterial quantification. In this study, we evaluated S. aureus nasal colonization in three mouse strains (BALB/c, C57BL/6, and Swiss Webster) using a bioluminescent strain (SAP231). In vitro, a visible Bioluminescent Signal Emission (BLSE) was observed until 106 bacteria and detected by IVIS® imaging system up to 104 cells. Animals were inoculated with one or two doses of approximately 109 colony-forming units (CFU) of SAP231. Swiss Webster mice showed the longest colonization time, with some animals presenting BLSE for up to 140 h. In addition, BLSE was higher in this strain. BALB/c and C57BL/6 strains showed consistent BLSE results for 48 h. BLSE intensity was higher in Swiss Webster inoculated with both doses. Three different positions for image capture were evaluated, with better results for the lateral and ventrodorsal positions. After the loss of BLSE, bacterial quantification was performed, and Swiss Webster mice presented more bacteria in the nasal cavity (approximately 105 CFU) than the other strains. Our results demonstrate that bioluminescent S. aureus allow monitoring of nasal colonization and estimation of the bacterial burden present in live animals until 48 h.

2.
Anat Rec (Hoboken) ; 307(4): 1001-1010, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263641

RESUMEN

Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.


Asunto(s)
Dinosaurios , Lagartos , Animales , Filogenia , Fósiles , Evolución Biológica , Extremidad Inferior/anatomía & histología , Dinosaurios/anatomía & histología , Marcha , Lagartos/anatomía & histología , Postura
3.
Anat Rec (Hoboken) ; 307(4): 1084-1092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36971057

RESUMEN

One of the most remarkable features in sauropod dinosaurs relates to their pneumatized skeletons permeated by a bird-like air sac system. Many studies described the late evolution and diversification of this trait in mid to late Mesozoic forms but few focused on the origin of the invasive respiratory diverticula in sauropodomorphs. Fortunately, it is possible to solve this thanks to the boom of new species described in the last decade as well as the broad accessibility of new technologies. Here we analyze the unaysaurid sauropodomorph Macrocollum itaquii from the Late Triassic (early Norian) of southern Brazil using micro-computed tomography. We describe the chronologically oldest and phylogenetically earliest unambiguous evidence of an invasive air sac system in a dinosaur. Surprisingly, this species presented a unique pattern of pneumatization in non-sauropod sauropodomorphs, with pneumatic foramina in posterior cervical and anterior dorsal vertebrae. This suggests that patterns of pneumatization were not cladistically consistent prior to the arrival of Jurassic eusauropods. Additionally, we describe the protocamerae tissue, a new type of pneumatic tissue with properties of both camellae and camerae. This reverts the previous hypothesis which stated that the skeletal pneumatization first evolved into camarae, and derived into delicate trabecular arrangements. This tissue is evidence of thin camellate-like tissue developing into larger chambers. Finally, Macrocollum is an example of the gradual evolution of skeletal tissues responding to the fastly specializing Respiratory System of saurischian dinosaurs.


Asunto(s)
Sacos Aéreos , Dinosaurios , Animales , Evolución Biológica , Dinosaurios/anatomía & histología , Microtomografía por Rayos X , Fósiles , Filogenia
4.
Anat Rec (Hoboken) ; 307(4): 1093-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38088472

RESUMEN

The Gondwana formations exposed in the Pranhita-Godavari Valley of central India include Middle Triassic to Lower Jurassic continental deposits that provide essential information about the tetrapod assemblages of that time, documenting some of the oldest known dinosaurs and the first faunas numerically dominated by this group. The Upper Maleri Formation of the Pranhita-Godavari Basin preserves an early-middle Norian dinosaur assemblage that provides information about the early evolutionary history of this group in central-south Gondwana. This assemblage comprises sauropodomorph dinosaurs and an herrerasaurian, including two nominal species. Here, we describe in detail the anatomy of one of those early dinosaurs, the bagualosaurian sauropodomorph Jaklapallisaurus asymmetricus. The new anatomical information is used to investigate the position of the species in an updated quantitative phylogenetic analysis focused on early sauropodomorphs. The analysis recovered Jaklapallisaurus asymmetricus as a member of Unaysauridae, at the base of Plateosauria, together with Macrocollum itaquii and Unaysaurus tolentinoi from the early Norian of southern Brazil. This phylogenetic result indicates that the dispersal of early plateosaurian sauropodomorphs between the Southern Hemisphere and what nowadays is Europe would have occurred shortly after Ischigualastian times because of the extension of their ghost lineage. Thus, the presence of early plateosaurians in the early Norian of South America and India reduces a previously inferred diachrony between the biogeographic dispersals of theropods and sauropodomorphs during post-Ischigualastian times.


Asunto(s)
Dinosaurios , Animales , Filogenia , Dinosaurios/anatomía & histología , Osteología , Fósiles , Evolución Biológica , Brasil
5.
Anat Rec (Hoboken) ; 307(4): 1071-1083, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37409690

RESUMEN

The lineage of sauropodomorph dinosaurs raised some of the most impressive animals that ever walked on Earth. However, the massive titans of the Mesozoic Era originated from far smaller dinosaurs. The Triassic beds from Brazil yielded the earliest part of this evolutionary history. Despite the diverse fossil record of early sauropodomorphs, juvenile specimens, as well as certain species are poorly sampled. This is the case for Unaysaurus tolentinoi, an unaysaurid sauropodomorph from Caturrita Formation (ca. 225 Ma; early Norian, Late Triassic). The holotype and only specimen of U. tolentinoi was excavated from the Água Negra Locality (São Martinho da Serra, Rio Grande do Sul, Brazil) in 1998. More than two decades later, no other fossil vertebrates have been reported from the same fossiliferous site. Here we describe a skeletally immature specimen which was found in association with the holotype of U. tolentinoi. The specimen was discovered after a first-hand examination of the holotype and comprises some isolated vertebrae and elements from the posterior autopodium. According to linear regressions, its metatarsal I is approximately 41.7 mm in length, compared to approximately 75.9 mm in the holotype. The repeated elements and reduced size indicates that it does not belong to the elements originally used to erect U. tolentinoi. Rather, the specimen is assigned to U. tolentinoi by topotypy and shared morphology. In addition to the reduced size, distinct lines of evidence (e.g., neurocentral sutures; bone texture) support its assignment to a skeletally immature individual. In sum, the new material expands the record of U. tolentinoi, and represents an additional juvenile dinosaur from the Caturrita Formation.


Asunto(s)
Dinosaurios , Animales , Filogenia , Dinosaurios/anatomía & histología , Brasil , Evolución Biológica , Fósiles
6.
Anat Rec (Hoboken) ; 307(4): 1515-1523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37767852

RESUMEN

Agudotherium gassenae is a poorly known non-mammaliaform probainognathian cynodont from the Late Triassic of southern Brazil. It is known only by mandibular remains, and its affinities within Probainognathia are unclear. Furthermore, its phylogenetic affinities were never investigated through computational analyses. In this study, we described new lower jaw remains excavated from the type locality and performed the first phylogenetic investigation of this taxon. The new specimen provides further anatomical information. The rostral region of the lower jaw was poorly preserved in the type series, leading to the interpretation that A. gassenae had three lower incisors. The new specimen demonstrates the presence of four incisors. The phylogenetic analysis positioned A. gassenae as the sister group of Prozostrodontia. This hypothesis differs from that previously presented in the former description of the taxon, in which it was considered a non-mammaliaform prozostrodont by means of character-state comparisons.


Asunto(s)
Fósiles , Mandíbula , Filogenia , Brasil , Maxilares
7.
Anat Rec (Hoboken) ; 307(4): 1025-1059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37725325

RESUMEN

Buriolestes schultzi is a small sauropodomorph dinosaur from Carnian beds (ca., 233 Ma) of southern Brazil. It is one of the earliest members of that lineage and is a key taxon to investigate the initial evolution of Sauropodomorpha. Here, we attribute a new specimen to B. schultzi from Late Triassic of southern Brazil, which represents the first occurrence of the taxon outside the type locality. The new specimen comprises a disarticulated and partial skeleton, including cranial and postcranial elements. It is tentatively regarded as an additional specimen of B. schultzi according to a unique combination of traits (including autapomorphies). Conversely, the new specimen is stouter than the other specimens of B. schultzi, as shown by femoral Robustness Index. Based on femoral circumference, the estimated body mass of the new specimen is approximately 15 kg, which is far higher than the previous estimations for other specimens of B. schultzi (i.e., approximately 7 kg). In fact, the new specimen and some specimens of Eoraptor lunensis and Saturnalia tupiniquim were found to be significantly stouter than coeval sauropodomorphs. Therefore, instead of all being constructed as gracile, the earliest sauropodomorphs experienced an unappreciated intraspecific variation in robustness. This is interesting because more precise data on species body mass are crucial in order to better understand the complex terrestrial ecosystems in which dinosaurs originated.


Asunto(s)
Evolución Biológica , Dinosaurios , Animales , Filogenia , Brasil , Dinosaurios/anatomía & histología , Ecosistema , Fósiles , Cráneo/anatomía & histología
8.
Anat Rec (Hoboken) ; 307(4): 1011-1024, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37971103

RESUMEN

The Carnian (Upper Triassic) rocks of the Candelária Sequence present a rich record of dinosaurs, including some of the oldest known dinosaurs worldwide. In this contribution we describe the first unequivocal dinosaur from the Pivetta site, located in the Restinga Sêca municipality, Southern Brazil. The specimen CAPPA/UFSM 0373 is an isolated but well-preserved left ilium. A thorough examination of the specimen's anatomy and a phylogenetic analysis provides evidence that CAPPA/UFSM 0373 belongs to the Herrerasauria. We were able to identify several similarities with potential non-herrerasaurid herrerasaurians (e.g., Tawa hallae, "Caseosaurus crosbyensis"), which were previously only known from North American deposits. In contrast, herrerasaurids (e.g., Herrerasaurus ischigualastensis) are almost exclusively known from South America. Our results support the nesting of CAPPA/UFSM 0373 as an early-diverging herrerasaurian. Furthermore, this is potentially the first record of a non-herrerasaurid herrerasaurian in unambiguous Carnian beds, suggesting a hidden diversity of dinosaurs in the Carnian rocks of the Candelária Sequence, which can be revealed even by fragmentary specimens.


Asunto(s)
Dinosaurios , Animales , Filogenia , Dinosaurios/anatomía & histología , Brasil , Ilion/anatomía & histología , Fósiles , Evolución Biológica
9.
Nature ; 620(7974): 589-594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587301

RESUMEN

Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.


Asunto(s)
Dinosaurios , Filogenia , Reptiles , Animales , Pico/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Reptiles/anatomía & histología , Reptiles/clasificación , Cráneo/anatomía & histología , Fósiles , Esqueleto
10.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515173

RESUMEN

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Formación de Anticuerpos , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunización , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Neutralizantes
11.
Sci Rep ; 13(1): 4981, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041170

RESUMEN

Comprising the oldest unequivocal dinosauromorphs in the fossil record, silesaurs play an important role in the Triassic radiation of dinosaurs. These reptiles provide the main source of information regarding the ancestral body plan of dinosaurs, as well as the basis for biogeographic models. Nevertheless, the co-occurrence of silesaurs and the oldest unequivocal dinosaurs is rare, which hampers reliable ecological inferences. Here we present the first species of silesaur from the oldest unequivocal dinosaur-bearing beds from Brazil. Amanasaurus nesbitti gen. et sp. nov. possesses a unique set of femoral traits among silesaurs, including the oldest occurrence of an anterior trochanter separated by the femoral shaft by a marked cleft. Its femoral length indicates that the new species rivals in size with most coeval dinosaurs. This find challenges the assumption that in faunas where silesaurs and unambiguous dinosaurs co-occurred, silesaurs were relatively smaller. Moreover, the presence of dinosaur-sized silesaurs within ecosystems with lagerpetids, sauropodomorphs and herrerasaurids reinforces the complex scenario regarding the early radiation of Pan-Aves. Silesaurs-independent of their phylogenetic position-persisted during most of the Triassic Period, with its plesiomorphic body size advancing through the dawn of dinosaurs, instead of silesaur lineages decrease in body size through time.


Asunto(s)
Evolución Biológica , Dinosaurios , Animales , Filogenia , Ecosistema , Brasil , Aves
13.
Ocul Surf ; 28: 42-52, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36646165

RESUMEN

PURPOSE: To assess the effect of corneal scar location on corneal nerve regeneration in patients with herpes simplex virus (HSV) keratitis in their affected and contralateral eyes over a 1-year period by in vivo confocal microscopy (IVCM), and to correlate these findings to corneal sensation measured by Cochet-Bonnet Esthesiometer. METHODS: Prospective, longitudinal, case-control study. Bilateral corneal nerve density and corneal sensation were analyzed centrally and peripherally in 24 healthy controls and 23 patients with unilateral HSV-related corneal scars using IVCM. RESULTS: In the central scar (CS) group, total nerve density in the central cornea remained significantly lower compared to controls at follow-up (11.05 ± 1.97mm/mm2, p < 0.001), and no significant nerve regeneration was observed (p = 0.090). At follow-up, total nerve density was not significantly different from controls in the central and peripheral cornea of the peripheral scar (PS) group (all p > 0.05), but significant nerve regeneration was observed in central corneas (16.39 ± 2.39mm/mm2, p = 0.007) compared to baseline. In contralateral eyes, no significant corneal nerve regeneration was observed in central or peripheral corneas of patients with central scars or peripheral scars at 1-year follow-up, compared to baseline (p > 0.05). There was a positive correlation between corneal nerve density and sensation in both central (R = 0.53, p < 0.0001) and peripheral corneas (R = 0.27, p = 0.0004). In the CS group, the corneal sensitivity was <4 cm in 4 (30.8%) and 7 (53.8%) patients in the central and peripheral corneas at baseline, and in 5 (38.5%) and 2 subjects (15.4%) at follow-up, whereas in the PS group only 1 patient (10%) showed a corneal sensation < 4 cm in the central cornea at baseline, and only 1 (10.0%), 3 (30.0%) and 1 (10.0%) patients at follow-up in the central, affected and opposite area of the cornea, respectively. CONCLUSION: The location of HSV scarring in the cornea affects the level of corneal nerve regeneration. Eyes with central corneal scar have a diminished capacity to regenerate nerves in central cornea, show a more severe reduction in corneal sensation in the central and peripheral corneas that persist at follow-up, and have a reduced capability to restore the corneal sensitivity above the cut-off of 4 cm. Thus, clinicians should be aware that CS patients would benefit from closer monitoring for potential complications associated with neurotrophic keratopathy, as they have a lower likelihood for nerve regeneration.


Asunto(s)
Lesiones de la Cornea , Queratitis Herpética , Humanos , Cicatriz/diagnóstico , Cicatriz/complicaciones , Cicatriz/patología , Estudios Prospectivos , Estudios de Casos y Controles , Córnea/patología , Queratitis Herpética/complicaciones , Queratitis Herpética/diagnóstico , Queratitis Herpética/patología , Regeneración Nerviosa/fisiología , Microscopía Confocal , Lesiones de la Cornea/complicaciones
15.
Mem Inst Oswaldo Cruz ; 117: e220239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700583

RESUMEN

Laboratory animals are essential mainly for experiments aiming to study pathogenesis and evaluate antivirals and vaccines against emerging human infectious diseases. Preclinical studies of coronavirus disease 19 (COVID-19) pathogenesis have used several animal species as models: transgenic human ACE2 mice (K18 mice), inbred BALB/c or C57BL/6N mice, ferrets, minks, domestic cats and dogs, hamsters, and macaques. However, the choice of an animal model relies on several limitations. Besides the host susceptibility, the researcher's experience with animal model management and the correct interpretation of clinical and laboratory records are crucial to succeed in preclinical translational research. Here, we summarise pathological and clinical findings correlated with virological data and immunological changes observed from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experimental infections using different well-established SARS-CoV-2 animal model species. This essay aims to critically evaluate the current state of animal model translation to clinical data, as described in the human SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Gatos , Cricetinae , Perros , Humanos , Ratones , Modelos Animales de Enfermedad , Hurones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
J Med Virol ; 95(1): e28427, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36571274

RESUMEN

The immune response is crucial for coronavirus disease 19 (COVID-19) progression, with the participation of proinflammatory cells and cytokines, inducing lung injury and loss of respiratory function. CLEC5A expression on monocytes can be triggered by viral and bacterial infections, leading to poor outcomes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to induce neutrophil activation by CLEC5A and Toll-like receptor 2, leading to an aggressive inflammatory cascade, but little is known about the molecular interactions between CLEC5A and SARS-CoV-2 proteins. Here, we aimed to explore how CLEC5A expression could be affected by SARS-CoV-2 infection using immunological tools with in vitro, in vivo, and in silico assays. The findings revealed that high levels of CLEC5A expression were found in monocytes from severe COVID-19 patients in comparison with mild COVID-19 and unexposed subjects, but not in vaccinated subjects who developed mild COVID-19. In hamsters, we detected CLEC5A gene expression during 3-15 days of Omicron strain viral challenge. Our results also showed that CLEC5A can interact with SARS-CoV-2, promoting inflammatory cytokine production, probably through an interaction with the receptor-binding domain in the N-acetylglucosamine binding site (NAG-601). The high expression of CLEC5A and high levels of proinflammatory cytokine production were reduced in vitro by a human CLEC5A monoclonal antibody. Finally, CLEC5A was triggered by spike glycoprotein, suggesting its involvement in COVID-19 progression; therapy with a monoclonal antibody could be a good strategy for COVID-19 treatment, but vaccines are still the best option to avoid hospitalization/deaths.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Citocinas , Anticuerpos Monoclonales , Glicoproteínas , Receptores de Superficie Celular/genética , Lectinas Tipo C/genética
17.
Sci Rep ; 12(1): 20844, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494410

RESUMEN

The origin of the air sac system present in birds has been an enigma for decades. Skeletal pneumaticity related to an air sac system is present in both derived non-avian dinosaurs and pterosaurs. But the question remained open whether this was a shared trait present in the common avemetatarsalian ancestor. We analyzed three taxa from the Late Triassic of South Brazil, which are some of the oldest representatives of this clade (233.23 ± 0.73 Ma), including two sauropodomorphs and one herrerasaurid. All three taxa present shallow lateral fossae in the centra of their presacral vertebrae. Foramina are present in many of the fossae but at diminutive sizes consistent with neurovascular rather than pneumatic origin. Micro-tomography reveals a chaotic architecture of dense apneumatic bone tissue in all three taxa. The early sauropodomorphs showed more complex vascularity, which possibly served as the framework for the future camerate and camellate pneumatic structures of more derived saurischians. Finally, the evidence of the absence of postcranial skeletal pneumaticity in the oldest dinosaurs contradicts the homology hypothesis for an invasive diverticula system and suggests that this trait evolved independently at least 3 times in pterosaurs, theropods, and sauropodomorphs.


Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Sacos Aéreos , Columna Vertebral/anatomía & histología , Aves , Huesos , Fósiles , Evolución Biológica , Filogenia
18.
Anat Rec (Hoboken) ; 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36285778

RESUMEN

Discoveries from South America have increased our knowledge on the early evolutionary history of sauropodomorph dinosaurs. The dietary shift from faunivorous to herbivorous creatures and the increasing body size are both widely documented in the fossil record. Conversely, the initial evolution of the elongated neck is poorly known. It is one of the most diagnostic features of Sauropodomorpha. There is a gap between the record of short-necked sauropodomorphs from Carnian (±233 Ma) and long-necked forms from early Norian (±225 Ma). As a consequence, it is unknown if the cervical vertebrae became long gradually or abruptly. In the present study, we present a new specimen excavated from strata that belong to this time interval (±228 Ma). CAPPA/UFSM 0352 comprises a series of five cervical vertebrae unearthed from the Late Triassic of Southern Brazil. The vertebrae are proportionately longer than that of older forms and proportionately shorter than that of younger ones. Therefore, our results demonstrate that the elongation of the neck of sauropodomorphs is an example of gradual evolutionary process. Except by its elongated shape, the general anatomy of the cervical elements resembles that of the earliest forms (i.e., have a conservative anatomy). Combined with previous data, it is possible to conclude that the shape of the skull and teeth, as well as the neck proportions, were the first structures to clearly differ derived sauropodomorphs from early diverging forms. Finally, some of the recovered phylogenetic scenarios favor the origins of the elongated neck in the clade Bagualosauria.

19.
PeerJ ; 10: e13276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529502

RESUMEN

Faxinalipterus minimus was originally described as a purported pterosaur from the Late Triassic (early Norian) Caturrita Formation of southern Brazil. Its holotype comprises fragmentary postcranial elements, whereas a partial maxilla was referred to the species. The assignment of Faxinalipterus minimus to Pterosauria has been questioned by some studies, but the specimen has never been accessed in detail after its original description. Here we provide a reassessment of Faxinalipterus minimus after additional mechanical preparation of the holotype. Our interpretations on the identity of several bones differ from those of the original description, and we found no support favoring pterosaur affinities for the taxon. The maxilla previously referred to Faxinalipterus minimus is disassociated from this taxon and referred to a new putative pterosauromorph described here from a partial skull and fragmentary postcranial elements. Maehary bonapartei gen. et sp. nov. comes from the same fossiliferous site that yielded Faxinalipterus minimus, but the lack of overlapping bones hampers comparisons between the two taxa. Our phylogenetic analysis places Faxinalipterus minimus within Lagerpetidae and Maehary bonapartei gen. et sp. nov. as the earliest-diverging member of Pterosauromorpha. Furthermore, the peculiar morphology of the new taxon reveals a new dental morphotype for archosaurs, characterized by conical, unserrated crowns, with a pair of apicobasally oriented grooves. These two enigmatic archosaurs expand our knowledge on the Caturrita Formation fauna and reinforce the importance of its beds on the understanding of Late Triassic ecosystems.


Asunto(s)
Dinosaurios , Fósiles , Animales , Filogenia , Dinosaurios/anatomía & histología , Brasil , Ecosistema , Cráneo/anatomía & histología
20.
Anat Rec (Hoboken) ; 305(12): 3456-3462, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35199946

RESUMEN

Exquisite discoveries and new interpretations regarding an enigmatic group of cursorial avemetatarsalians led to a new phylogenetic hypothesis regarding pterosaur affinities. Previously thought to be dinosaur precursors, lagerpetids are now considered to be the closest relatives to pterosaurs. This new hypothesis sheds light on a new explorable field, especially regarding the character acquisition and evolution within the pterosaur lineage. In the present study, the morphospace occupation of distinct skeletal regions of lagerpetids within the morphological spectrum of avemetatarsalians is investigated. This approach indicates which portions of the skeleton are more similar to the anatomy of pterosaurs and which portions present different homoplastic signals. The analyses demonstrate that the craniomandibular traits of lagerpetids are pterosaur-like, the pectoral girdle and forelimb are dinosauromorph-like and the axial skeleton and the pelvic girdle and hindlimb are unique and highly specialized among the analyzed sample. So, despite the close phylogenetic relationships, the postcranial skeleton of lagerpetids and pterosaurs are very different. The occurrence of two distinct and highly specialized groups of pterosauromorphs coexisting with a wide ecological range of dinosauromorphs during the Triassic suggests pressure for new niches occupation.


Asunto(s)
Dinosaurios , Fósiles , Animales , Filogenia , Evolución Biológica , Dinosaurios/anatomía & histología , Huesos/anatomía & histología , Ocupaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...